STICHTING MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49 AMSTERDAM

On converte treserving families of probability distribution

(Statistica Meerlandica, 22 (1969), p. 23-32)

On convexity preserving families of probability distributions

by W. R. van Zwet *

1. Introduction

Let F_{θ} be a family of probability distribution functions on R^1 with parameter $\theta \in T \subseteq R^1$, and let X denote the union of the supports of these distributions. For $k \geq 0$, let $\{g_0, g_1, ..., g_{k+1}\}$ be a set of real-valued finite functions on X that are integrable with respect to F_{θ} for all $\theta \in T$ and define

$$\chi_i(\theta) = \int g_i(x) dF_{\theta}(x), \quad i = 0, 1, ..., k+1.$$
 (1.1)

Following S. KARLIN and W. J. STUDDEN in [3] with a minor modification, we shall say that $\{g_0, g_1, ..., g_{k+1}\}$ constitute a weak complete Tchebycheff system (WCT-system) if for each $0 \le m \le k+1$ and all $x_0 < x_1 < ... < x_m \in X$ the determinant

$$\det [g_i(x_j)]_{i,j=0,...,m} \ge 0;$$
(1.2)

the system is called a *complete Tchebycheff system* (CT-system) if the inequality is always strict. The difference between this definition of a WCT-system and the one given in [3] is that we retain the case where $g_0, g_1, ..., g_m$ are linearly dependent on X for some $m \le k+1$; in that case any choice of $g_{m+1}, ..., g_{k+1}$ will trivially satisfy definition (1.2). We shall also express inequalities (1.2) by saying that g_{k+1} is generalized convex with respect to the WCT-system $\{g_0, ..., g_k\}$.

Our discussion of WCT-systems will involve the related concept of total positivity (cf. [1]). A function $f(x,\theta)$ on $X \times T$ is said to be totally positive of order n (TP_n) if for every $1 \le m \le n$, all $x_1 < x_2 < \ldots < x_m \in X$ and all $\theta_1 < \theta_2 < \ldots < \theta_m \in T$,

$$\det [f(x_i, \theta_j)]_{i,j=1,...,m} \ge 0.$$
(1.3)

The first question that comes to mind in this context is whether one can find conditions on the family F_{θ} that ensure that $\{\chi_0, \chi_1, ..., \chi_{k+1}\}$ will be a WCT-system on T whenever $\{g_0, g_1, ..., g_{k+1}\}$ constitutes a WCT-system on X. If the family F_{θ} possesses densities $p(x, \theta)$ with respect to a σ -finite measure μ with spectrum X and hence

$$\chi_i(\theta) = \int g_i(x) p(x, \theta) d\mu(x),$$

this question is easily answered. We have for each $0 \le m \le k+1$ (cf. [1])

$$\det \left[\chi_i(\theta_j)\right] = \int_{x_0 < x_1 < \dots < x_m} \det \left[g_i(x_j)\right] \det \left[p(x_i, \theta_j)\right] d\mu(x_0) \dots d\mu(x_m)$$

where in each determinant i and j run from 0 to m. It follows that the condition that p is TP_{k+2} is certainly sufficient; since we require that $\{\chi_0, ..., \chi_{k+1}\}$ will inherit the WCT-property for every WCT-system $\{g_0, ..., g_{k+1}\}$, the condition is essentially also

This research was supported in part by the Office of Naval Research Contract Nonr-3656 (18) while the author was visiting at the University of California in Berkeley. Report S 387 (SP 106) of the Statistical Department of the Mathematical Centre at Amsterdam.

^{*} University of Leiden

necessary (by "essentially" is meant that for any $\theta_1 < ... < \theta_m$ the defining inequality (1.3) need not hold on a set of product-measure 0). We note that the fact that F_{θ} are probability distribution functions is not used in establishing the condition.

In view of this general result it is hardly surprising that recent discussions of convexity preserving properties (cf. [1] and [2]) have been confined to families of densities that are totally positive of the appropriate order. However, one usually does not discuss the class of all WCT-systems of a given order but restricts attention to a relatively small subclass (e.g. the case where $g_i = g_1^i$ for i = 0, 1, ..., k). Also one often imposes additional restrictions on the family F_{θ} to ensure that for those systems $\{g_0, ..., g_{k+1}\}$ that are considered, $\{\chi_0, ..., \chi_{k+1}\}$ will also belong to some restricted class.

In sections 3 and 4 of this paper we investigate how far the TP_{k+2} condition for p can be relaxed in two such restricted cases that seem to be important in practice. Like section 1, the second section is of an expository character.

2. Convexity of order k

Let f be a real-valued finite function defined on an arbitrary set $Y \subseteq R^1$. For $k \ge 0$ we shall say that f is convex of order k (C_k) if f is generalized convex with respect to the CT-system $\{1, y, y^2, ..., y^k\}$, i.e. if for all $y_1 < y_2 < ... < y_{k+2}$

$$D_{f}(y_{1},...,y_{k+2}) = \begin{vmatrix} 1 & y_{1} & y_{1}^{2} & ... & y_{1}^{k} & f(y_{1}) \\ 1 & y_{2} & y_{2}^{2} & ... & y_{2}^{k} & f(y_{2}) \\ \vdots & & & \vdots \\ 1 & y_{k+2} & y_{k+2}^{2} & ... & y_{k+2}^{k} & f(y_{k+2}) \end{vmatrix} \ge 0.$$
 (2.1)

For k = 0,1, (2.1) reduces to the ordinary definitions of non-decreasing or (measurable) convex functions. Generally speaking (2.1) is an extension of the concept of non-negative (k+1)-th derivative. C_k functions were extensively studied by T. Popo-VICIU in [6]. We note that S. KARLIN [1] refers to C_k functions as convex of order (k+1).

If P_m denotes a polynomial of degree at most m, then equivalent definitions of the C_k property are obviously:

- (A) (cf. [1]). For every P_k , $f-P_k$ changes sign at most (k+1) times on Y. If it does have (k+1) sign-changes, the signs occur in the order $(-)^{k+1}$, $(-)^k$, ..., +, -, + for increasing values of the argument.
- (B) For every $y_1 < y_2 < ... < y_{k+2} \in Y$, the P_{k+1} having $P_{k+1}(y_i) = f(y_i)$, i = 1, 2, ..., k+2, has non-negative coefficient for its (k+1)-th degree term.

There is also a close connection with differences. Let

$$\Delta_h^1 f(y) = f(y+h) - f(y)$$

$$\Delta_h^m f(y) = \Delta_h^1 \Delta_h^{m-1} f(y) = \sum_{j=0}^m (-1)^{m-j} {m \choose j} f(y+jh)$$
(2.2)

and generally

$$\Delta_{h_1,\ldots,h_m}^m f(y) = \Delta_{h_m}^1 \Delta_{h_1,\ldots,h_{m-1}}^{m-1} f(y) = \sum_{j=0}^m (-1)^{m-j} \sum_{1 \le i_1 < i_2 < \ldots < i_j \le m} f(y + \sum_{\nu=1}^m h_{i_{\nu}}).(2.3)$$
Example a way a second of

Furthermore let

$$D_f^*(y_1, ..., y_{k+2}) = \frac{D_f(y_1, ..., y_{k+2})}{\prod\limits_{1 \le i < j \le k+2} (y_j - y_i)};$$
(2.4)

since the denominator is positive for $y_1 < y_2 < ... < y_{k+2}$, D_f may be replaced by D_f^* in definition (1.1). The following relation between D_f^* and differences may be proved by induction on k.

Lemma 2.1

If Π denotes the set of permutations $\pi = [\pi(1), \pi(2), ..., \pi(k+1)]$ of the numbers 1, 2, ..., k+1, then

$$\Delta_{h_1,\ldots,h_{k+1}}^{k+1} f(y) = \prod_{i=1}^{k+1} h_i \sum_{\pi \in \Pi} D_f^* \left(y, y + h_{\pi(1)}, \ldots, y + \sum_{\nu=1}^{k+1} h_{\pi(\nu)} \right). \tag{2.5}$$

We note that for $h_1 = h_2 = \dots = h_{k+1} = h$, (2.5) reduces to

$$\Delta_h^{k+1} f(y) = (k+1)! h^{k+1} D_f^*[y, y+h, ..., y+(k+1)h].$$
 (2.6)

It follows from lemma 2.1 that if f is C_k on Y, then for all $h_1, h_2, ..., h_{k+1} > 0$,

$$\Delta_{h_1,\ldots,h_{k+1}}^{k+1} f(y) \ge 0 \tag{2.7}$$

whenever defined, i.e. whenever all $y + \sum_{i=1}^{j} h_{i_i} \in Y$.

In the special case that Y is an interval there is also a converse result and the following definition of the C_k property is equivalent to (2.1) in this case:

(C)
$$f$$
 is (Lebesgue)-measurable and for $h > 0$, $y \in Y$, $y + (k+1)h \in Y$,
$$\Delta_h^{k+1} f(y) \ge 0. \tag{2.8}$$

In this case, however, the C_k property is hardly a generalization of non-negative (k+1)-th derivative at all. In fact, if Y is an open interval and $k \ge 1$, definition (2.1) ensures continuity of f on Y and is equivalent to

(D) f is (k-1) times continuously differentiable and $f^{(k-1)}$ is convex on Y.

Finally we consider the special case where Y is a set of consecutive integers. For integer h > 0

$$\Delta_h^{k+1} f(y) = \sum_{h_1=0}^{h-1} \dots \sum_{h_{k+1}=0}^{h-1} \Delta_1^{k+1} f\left(y + \sum_{j=1}^{k+1} h_j\right). \tag{2.9}$$

Combining (2.6) and (2.9) we find that the C_k property may be defined in this case by

(E) For all y, $y+k+1 \in Y$

$$\Delta_1^{k+1} f(y) \ge 0. \tag{2.10}$$

For further details concerning the definitions given above the reader is referred to [6]. Let f_1 and f_2 be real-valued finite functions on Y. We shall say that f_2 is C_k with respect to f_1 on Y if there exists a C_k function f on $f_1(Y)$ such that $f_2 = f(f_1)$ on f_2 . If f_1 is non-decreasing on f_2 is constant on any set where f_2 is constant, this reduces to

$$\begin{vmatrix} 1 & f_{1}(y_{1}) & f_{1}^{2}(y_{1}) & \dots & f_{1}^{k}(y_{1}) & f_{2}(y_{1}) \\ 1 & f_{1}(y_{2}) & f_{1}^{2}(y_{2}) & \dots & f_{1}^{k}(y_{2}) & f_{2}(y_{2}) \\ \vdots & & & \vdots \\ 1 & f_{1}(y_{k+2}) & f_{1}^{2}(y_{k+2}) & \dots & f_{1}^{k}(y_{k+2}) & f_{2}(y_{k+2}) \end{vmatrix} \geq 0$$
 (2.11)

for all $y_1 < y_2 < ... < y_{k+2} \in Y$.

3. Preserving convexity of order k

Returning to the setup of section 1, we let g be a real-valued finite function on X that is integrable with respect to F_{θ} for all $\theta \in T$ and define

$$\chi(\theta) = \int g(x) dF_{\theta}(x).$$

We shall say that the family F_{θ} preserves convexity of order k if χ is C_k on T whenever g is C_k on X, i.e. whenever g is generalized convex with respect to $\{1, x, ..., x^k\}$ then χ is generalized convex with respect to $\{1, \theta, ..., \theta^k\}$. In [1] S. Karlin has shown that if densities $p(x,\theta)$ with respect to μ exist, then a sufficient condition for F_{θ} to preserve convexity of order k is that p is TP_{k+2} and that whenever g is a polynomial of exact degree $m \le k$, then χ is also a polynomial of exact degree m. According to the result of section 1 the first part of this condition ensures that χ is generalized convex with respect to the WCT-system

$$\int x^i dF_{\theta}(x), \qquad i = 0, 1, ..., k,$$

whereas the second part ensures that this is equivalent to generalized convexity with respect to $\{1, \theta, ..., \theta^k\}$.

However, this condition is not necessary. For k = 0 a condition that is necessary as well as sufficient was given by J. KRZYZ in [4]:

Lemma 3.1

 χ is non-decreasing on T whenever g is non-decreasing on X if and only if the family F_{θ} is stochastically increasing (i.e. $F_{\theta}(x)$ is non-increasing in θ for every fixed x).

Since the TP_2 property of p is equivalent to monotone likelihood ratio, KRZYZ's condition is weaker than KARLIN's for k=0 (cf. [5]).

For general k it is also easy to find a necessary and sufficient condition, provided that we restrict attention to those C_k functions g that can be extended to a C_k function on an open interval containing X. Since the convex functions constitute a convex cone spanned by the linear functions and functions of the form

$$h(x) = \begin{cases} 0 & \text{for } x \leq x_0 \\ x - x_0 & \text{for } x > x_0, \end{cases}$$

we find from definition D of section 2 that the convex cone of C_k functions is spanned by the polynomials P_k of degree at most k and functions of the form

$$h_k(x) = \begin{cases} 0 & \text{for } x \le x_0 \\ (x - x_0)^k & \text{for } x > x_0. \end{cases}$$

For k=0 this is obviously also true. It follows that it is sufficient as well as necessary to require that χ be C_k whenever g is of one of the forms mentioned above. However, if g is a polynomial of degree at most k, then so is -g and as a result both χ and $-\chi$ are required to be C_k , which implies that χ is also a polynomial of degree at most k. Hence we have proved

Lemma 3.2

 χ is C_k on T whenever g is C_k on an open interval containing X, if and only if for every x_0

$$\int (x-x_0)^k dF_{\theta}(x)$$

is C_k on T and whenever g is a polynomial of degree at most k the same holds for χ . We note that for $k \le 1$ the condition that the C_k function g can be extended to a C_k function on an open interval containing X is always satisfied. For k = 0 the lemma reduces to lemma 3.1.

Although for $k \ge 1$ lemma 3.2 seems to be fairly useless for practical purposes, the results obtained so far do seem to indicate that there exists a large class of C_k preserving families that do not possess any total positivity properties. The results in the remainder of this section exhibit a number of these families.

Theorem 3.1

Let F_0 and F be distribution functions with characteristic functions φ_0 and φ respectively, and suppose that F is infinitely divisible and has F(-0) = 0. If for $t \ge 0$, F_t denotes the distribution function corresponding to $\varphi_0.\varphi^t$, then the family F_t , $0 \le t < \infty$, preserves convexity of all orders.

Proof

Let G_t denote the distribution function corresponding to φ^t and let X_t ($t \ge 0$) be a stochastic process with non-negative stationary independent increments for which $X_0, X_{s+t} - X_s$ and X_t ($s, t \ge 0$) have distribution functions F_0 , G_t and F_t respectively. For fixed $t \ge 0$ and h > 0 define

$$Z_i = X_{t+ih} - X_{t+(i-1)h}, \quad i = 1, 2, ..., k+1.$$

 $Z_1, Z_2, ..., Z_{k+1}$ are independent and identically distributed random variables that are also independent of X_t . Hence, because of the exchangeability of $Z_1, ..., Z_{k+1}$,

$$E\left[\sum_{j=0}^{k+1} (-1)^{k+1-j} {k+1 \choose j} g(X_{t+jh}) \mid X_t = x\right] =$$

$$= E\left[\sum_{j=0}^{k+1} (-1)^{k+1-j} {k+1 \choose j} g(x+Z_1+\ldots+Z_j)\right] =$$

$$= E\left[\sum_{j=0}^{k+1} (-1)^{k+1-j} \sum_{1 \le i_1 < \ldots < i_j \le k+1} g(x+Z_{i_1}+\ldots+Z_{i_j})\right] =$$

$$= E\left[A_{Z_1,\ldots,Z_{k+1}}^{k+1} g(x)\right].$$

Since $Z_1, ..., Z_{k+1} \ge 0$ with probability 1, the last expression is non-negative for every C_k function g and all x by (2.7). As a result

$$\Delta_h^{k+1} \chi(t) = E\left[\sum_{j=0}^{k+1} (-1)^{k+1-j} \binom{k+1}{j} g(X_{t+jh})\right] \ge 0$$

for all $t \ge 0$ and h > 0. As χ is a measurable function defined on the interval $[0, \infty)$, it is C_k by definition C of section 2.

If we consider only integer values of t in theorem 3.1, we may drop the assumption that F is infinitely divisible without affecting the proof. The C_k character of χ on the integers now follows from $\Delta_1^{k+1} \chi \geq 0$ by definition E of section 2. Specializing to the case where F_0 is degenerate at 0 we obtain

Corollary 3.1

Every family F_n , n = 1, 2, ..., of *n*-fold convolutions of a distribution function F_1 having $F_1(-0) = 0$ preserves convexity of every order.

We note that the fact that F_n preserves convexity or order k was proved by S. Kar-LIN and F. Proschan in [2] under the additional assumption that F_1 possesses a density p that is a Pólya frequency density of order k+2 (i.e. p(x-y) is TP_{k+2} in x and y).

Another special case of theorem 3.1 is obtained by assuming F to be degenerate at 1, in which case the theorem reduces to:

Every location parameter family $F_{\theta}(x) = G(x-\theta), -\infty < \theta < \infty$, preserves convexity of every order.

This result is of course rather trivial. Without invoking theorem 3.1, it follows at once from

$$\Delta_h^{k+1}\chi(\theta) = \Delta_h^{k+1} \int g(x+\theta) dG(x) = \int \Delta_h^{k+1} g(x+\theta) dG(x).$$

In the same manner one easily verifies:

Every scale parameter family $F_{\theta}(x) = G(x/\theta)$, $0 < \theta < \infty$, preserves convexity of every odd order. If moreover G(-0) = 0, then the family preserves convexity of all orders.

4. Invariant convexity preserving families

Let g_1, g_2, χ_1 and χ_2 be defined as in section 1. We shall say that the family F_{θ} is invariant convexity preserving if, whenever g_1 is non-decreasing and g_2 is convex with

respect to g_1 on X, then χ_1 is non-decreasing and χ_2 is convex with respect to χ_1 on T. In terms of WCT-systems we may express this property by requiring that for every WCT-system of the form $\{1, g_1, g_2\}$ the corresponding system $\{1, \chi_1, \chi_2\}$ is also a WCT-system.

In the first place this definition asserts that the family F_{θ} preserves the monotonicity of g_1 and hence by lemma 1 the family is stochastically increasing; F_{θ} also preserves convexity (of order 1) provided that the parameter is subjected to a suitable non-decreasing transformation

$$\eta = \eta(\theta) = \int x dF_{\theta}(x).$$

Moreover, this convexity preserving property is invariant under non-decreasing transformations g_1 of the random variable, the appropriate monotone transformation of θ then becoming χ_1 . It is precisely because of this invariance that we do not require that F_{θ} be convexity preserving with respect to θ itself, i.e. that η be linear in θ . This property would be destroyed by non-linear transformations g_1 anyway and would only result in fixing a possibly awkward parametrization.

From the general result of section 1 it follows that F_{θ} is invariant convexity preserving if the density p is TP_3 . The following theorem provides a necessary and sufficient condition.

Theorem 4.1

Define $\overline{F}_{\theta}(x) = 1 - F_{\theta}(x)$. The family F_{θ} is invariant convexity preserving if and only if $\{1, \overline{F}_{\theta}(x_1), \overline{F}_{\theta}(x_2)\}$ is a WCT-system on T for every fixed pair $x_1 < x_2$.

Proof

The condition asserts that for $x_1 < x_2$ and $\theta_0 < \theta_1 < \theta_2$,

$$\begin{vmatrix} 1 & \overline{F}_{\theta_{0}}(x_{1}) \\ 1 & \overline{F}_{\theta_{1}}(x_{1}) \end{vmatrix} \geq 0, \begin{vmatrix} 1 & \overline{F}_{\theta_{0}}(x_{1}) & \overline{F}_{\theta_{0}}(x_{2}) \\ 1 & \overline{F}_{\theta_{1}}(x_{1}) & \overline{F}_{\theta_{1}}(x_{2}) \\ 1 & \overline{F}_{\theta_{2}}(x_{1}) & \overline{F}_{\theta_{2}}(x_{2}) \end{vmatrix} \geq 0.$$
 (4.1)

The first inequality means that F_{θ} is stochastically increasing and we have already remarked that this is necessary and sufficient for χ_1 to be non-decreasing whenever g_1 is. We may therefore assume that $\overline{F}_{\theta}(x)$ is non-decreasing in θ for every fixed x and restrict attention to the second inequality.

Let g_1 be non-decreasing and let $g_2 = f(g_1)$ where f is convex on $g_1(X)$. Since a convex function can be extended to a convex function on an interval, the same reasoning that we used in the proof of lemma 3.2 shows that we need only be concerned with functions f that are linear and functions f of the form

$$f(y) = \begin{cases} 0 & \text{for } y \le y_0 \\ y - y_0 & \text{for } y > y_0. \end{cases}$$
 (4.2)

Without loss of generality we may assume that $y_0 = g_1(x_0) \in g_1(X)$. For linear f, χ_2 is linear and hence convex with respect to χ_1 . Only functions f of the form (4.2)

remain to be considered and as a result we have the following necessary and sufficient condition for a stochastically increasing family F_{θ} to be invariant convexity preserving:

For every non-decreasing g_1 and every $x_0 \in X$,

$$\chi_{2}(\theta) = \int_{x_{0}}^{\infty} [g_{1}(x) - g_{1}(x_{0})] dF_{0}(x)$$

is convex with respect to $\chi_1(\theta)$.

By an approximation argument one shows that it is sufficient to consider only those functions g_1 that are left-continuous, non-decreasing step-functions assuming finitely many values. But then the above condition becomes:

For all m = 1, 2, ..., all $x_1 < x_2 < ... < x_m$, all $\alpha_i > 0$, i = 1, 2, ..., m, all $1 \le i_0 \le m$ and all c,

$$\sum_{i=i_0}^m \alpha_i \, F_0(x_i) \tag{4.3}$$

is convex with respect to

$$\sum_{i=1}^{m} \alpha_i \, \overline{F}_{\theta}(x_i) + c. \tag{4.4}$$

Since (4.4) is non-decreasing in θ and (4.3) is constant on any set where (4.4) is constant, the determinantal convexity definition (2.11) for k = 1 applies. By subtracting from the second column in this determinant we find that convexity of (4.3) with respect to (4.4) is equivalent to

$$\begin{vmatrix}
1 & \sum_{i=1}^{i_0-1} \alpha_i \overline{F}_{\theta_0}(x_i) & \sum_{i=i_0}^{m} \alpha_i \overline{F}_{\theta_0}(x_i) \\
\vdots & \vdots & \vdots \\
1 & \sum_{i=1}^{i_0-1} \alpha_i \overline{F}_{\theta_2}(x_i) & \sum_{i=i_0}^{m} \alpha_i \overline{F}_{\theta_2}(x_i)
\end{vmatrix} = (4.5)$$

By choosing $i_0 = m = 2$ we find that condition (4.1) is necessary; since every term in (4.5) has $x_i < x_j$ it is also sufficient. This completes the proof of the theorem.

It may be of interest to compare the sufficient condition that F_{θ} possesses a TP_3 density $p(x,\theta)$ with the necessary and sufficient condition of the theorem. One easily shows that the TP_3 assumption for p implies that $\overline{F}_{\theta}(x)$ is TP_3 , or

$$\begin{array}{c|ccccc}
\bar{F}_{\theta_{0}}(x_{0}) & \bar{F}_{\theta_{0}}(x_{1}) \\
\bar{F}_{\theta_{1}}(x_{0}) & \bar{F}_{\theta_{1}}(x_{1})
\end{array} \ge 0, \quad
\begin{array}{c|ccccc}
\bar{F}_{\theta_{0}}(x_{0}) & \bar{F}_{\theta_{0}}(x_{1}) & \bar{F}_{\theta_{0}}(x_{2}) \\
\bar{F}_{\theta_{1}}(x_{0}) & \bar{F}_{\theta_{1}}(x_{1}) & \bar{F}_{\theta_{1}}(x_{2}) & \geq 0, \\
\bar{F}_{\theta_{2}}(x_{0}) & \bar{F}_{\theta_{2}}(x_{1}) & \bar{F}_{\theta_{2}}(x_{2})
\end{array} \ge 0, \quad (4.6)$$

for $x_0 < x_1 < x_2$ and $\theta_0 < \theta_1 < \theta_2$. By letting x_0 tend to $-\infty$ we see that (4.6) implies (4.1). Hence the condition that $\overline{F}_{\theta}(x)$ be TP_3 is also sufficient for F_{θ} to be invariant convexity preserving.

If we restrict ourselves to the special case where the parameter set T is an interval and $\overline{F}_{\theta}(x)$ is differentiable with respect to θ , it turns out that theorem 4.1 involves a TP_2 instead of a TP_3 condition.

Theorem 4.2

Let T be an interval and let $q(x,\theta) = (\partial/\partial\theta)\overline{F}_{\theta}(x)$ be defined on T for all x. Then the family F_{θ} is invariant convexity preserving if and only if q is TP_2 .

Proof

The first inequality in (4.1) is equivalent to $q \ge 0$. Since $\bar{F}_{\theta}(x_2)$ is constant on any set where $\bar{F}_{\theta}(x_1) + \bar{F}_{\theta}(x_2)$ is constant and the latter is non-decreasing in θ , the second inequality of (4.1) asserts that $\bar{F}_{\theta}(x_2)$ is convex with respect to $\bar{F}_{\theta}(x_1) + \bar{F}_{\theta}(x_2)$. This in turn is equivalent to $q(x_1, \theta_1) q(x_2, \theta_2) - q(x_1, \theta_2) q(x_2, \theta_1) \ge 0$ for $x_1 < x_2$ and $\theta_1 < \theta_2$.

It is tempting to ask whether theorem 4.2 can be generalized. One conceivable generalization would deal with invariant C_k preserving families F_θ , i.e. families for which χ_1 is non-decreasing and χ_2 is C_k with respect to χ_1 whenever g_1 is non-decreasing and g_2 is C_k with respect to g_1 . However, even a cursory inspection shows that only trivial examples of such families exist. The necessary requirement that χ_2 be a polynomial in χ_1 of degree at most k whenever g_2 is a polynomial in g_1 of degree at most k, can not be satisfied for every non-decreasing g_1 except in a trivial manner.

A more promising generalization is to consider families F_{θ} that transform WCT-systems $\{1, g_1, ..., g_{k+1}\}$ into WCT-systems $\{1, \chi_1, ..., \chi_{k+1}\}$. If one restricts attention to the case where X and T are intervals and g_i and F_{θ} satisfy certain regularity conditions, one shows in a fairly straightforward manner that a necessary and sufficient condition on F_{θ} is that q be TP_{k+1} , thus generalizing lemma 3.1 and theorem 4.2 to the case where $k \geq 2$. We may conclude that although something may be lost for $k \geq 2$, the basic reason that theorems 4.1 and 4.2 work is not the fact that k = 1 in that case, but that $g_0 \equiv 1$ and that F_{θ} are probability distribution functions.

References

- [1] KARLIN, S. (1963), Total positivity and convexity preserving transformations. Convexity: Proc. Symp. Pure Math. 7, 329-347, Amer. Math. Soc., Providence.
- [2] KARLIN, S. and F. Proschan (1960), Pólya type distributions of convolutions. Ann. Math. Statist. 31, 721-736.
- [3] KARLIN, S. and W. J. STUDDEN (1966), Tchebycheff systems: with applications in analysis and statistics. John Wiley & Sons, New York, London, Sydney.
- [4] Krzyz, J. (1952), On monotonity-preserving transformations. Ann. Univ. Mariae Curie-Sklo-dowska Sect. A 6, 91-111.
- [5] LEHMANN, E. L. (1959), Testing statistical hypotheses. John Wiley & Sons, New York.
- [6] Popoviciu, T. (1945), Les fonctions convexes. Herman et Cie, Paris.